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Executive Summary 
 
For the final project in CS232, we were to design “a miniscule instruction set.”  We were then 
asked to model our design, test it, debug it, assess its performance, and possibly implement it on a 
Field Programmable Gate Array (FPGA) microchip.  This executive summary is intended to give 
the reader a brief summary of our design flow and our current status. 
 
For the first milestone of our project, we had to design the foundation of our processor.  We 
decided we would have 16 registers.  We thought it would be convenient to have a “zero” 
register.  Other registers included two argument registers, three temporary registers, three saved 
temporary registers, two kernel registers, a stack register, a return address register, a register for 
the assembler, a register for the results, and a display register.  We also decided in milestone I to 
have four different instruction types: R1, R2, C, and B types. 
 
For the next milestone, we decided on certain components we would need for our processor.  
These parts included a memory, instruction register, register file, temporary registers, an ALU, a 
Sign Extend, and a concatenate part.  The basic functionalities of each part can be found in our 
design document.  Also in milestone II, we designed our first RTL (which also can be found in 
our design document).   
 
For milestone III, we had to produce the first model of the datapath.  We decided to keep our 
datapath similar to MIPS because we understood it better than other processor types, and we 
could use MIPS as a model for future development.  Another section of milestone III was 
determining the function of each control signal.  We ended up having 18 different control signals.  
Also in milestone III, we had to define a test plan for our processor.  We felt that our test plan 
was extensive and covered every functionality required so that our processor could be successful. 
 
In milestone IV, we designed our control component.  Our processor’s control was implemented 
using a finite state machine.  The combinational logic unit, called the ALUOp Calculator, uses the 
Op code and function code, both of which are inputs to the Control, to determine the appropriate 
ALUOp for the instruction. Also in this section we had to develop a test plan for the control part.  
Our test included several simulations to ensure correct transitions. 
 
For the last milestone of the project, we needed to implement our components into Xilinx.  Each 
one of us was assigned various parts to complete.  We were supposed to design, test, and create a 
part of each one of our components.  We felt that if each individual part was tested that it would 
ensure that our final product would be successful.  We used ModelSim to test our individually 
components, partly because Caleb understood how to use it, and also because upperclassmen who 
completed the project in the past recommended testing everything using ModelSim.   
 
In the end, the processor was capable of executing several instructions—including branching, 
storing and loading words to and from memory, and R-type instructions—but not the entire GCD 
program.  Several issues with developed with Xilinx and the integration of the components during 
the last few hours of project time that hindered our success.  This includes a problem when the 
entire processor was moved from one team member's computer to another's that caused an error 
ingenerating timing reports and gate counts. 
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Introduction 
 
The purpose of the project described in this document is to design a small instruction set and model it using 
Xilinx software.  The instruction set was designed to operate on a 16-bit microprocessor, also designed in 
this project. 
 
The team was given a problem—to find a number relatively prime to a given number using Euclid's 
algorithm—for which it designed an instruction set to solve.  The instruction set needed to be sufficiently 
robust to be able to handle nested procedures, parameters, and general computations not necessarily needed 
for the execution of Euclid's algorithm. 
 
In addition to these basic requirements, the processor outlined here supports recursive procedures through 
stack memory usage and interrupts from five input devices. 
 
Beginning with some knowledge of the 32-bit MIPS instruction set and how that might be implemented, 
the team devised a 16-bit instruction set meeting the above requirements.  The design includes the actual 
instructions and their translation to machine code, the register transfer language instructions to execute the 
programmer-level instructions, and a corresponding datapath. 
 
Following this design, the datapath was constructed and tested in Xilinx.  CoreGen use was permitted 
where applicable, and StateCAD/Verilog use was permitted for the control units. 
 
Testing followed implementation.  All components were tested using test benches in ModelSim, but the 
control finite state machine unit underwent preliminary exhaustive testing in StateCAD's StateBench. 
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Summary of Design 
 
Our initial design phase consisted of choosing what types of instructions we planned to include in our 
architecture.  Using Euclid's algorithm as a source, we translated a version of the algorithm from Java to 
assembly.  This process allowed us to determine what instructions were absolute necessities, and which 
instructions were optional.  Pages 49 and beyond of the accompanying design journal (Appendix B) has 
detailed descriptions of each instruction type as well as each individual instruction.  In order to leave as 
many options open in the event a future revision was required, our group created a single branch 
instruction.  This branch if not equal instruction assumes the role of its counterpart; however, it requires 
manipulation on the part of the programmer.  Additional drawbacks include the limited ability to branch at 
most 31 instructions in either direction.  This has obvious limitations in the size and scope of any program 
written in our assembly language.  Nevertheless, this instruction fulfills the requirements for the specified 
program.   
 
Most notable deviations from the standard MIPS instruction set are the following instructions: jump 
register and link, load address, move to co-processor, and move-from-coprocessor.  In an effort to make 
our instruction set as compact and efficient as possible, we combined the three MIPS jump instructions into 
one single instruction.  This instruction jumps to the value of the given register, and automatically stores 
the value of the PC in the return register.  While this shortens our instruction list, it makes programming 
slightly more difficult.  The programmer must be aware that they will change the return address every time 
that they perform a jump. 
 
The load address instruction is actually a pseudo-instruction that places the memory location of the given 
label into the given register.  We initially wanted to avoid the inclusion of pseudo-instructions in our 
architecture to keep things as simple as possible, however we eventually decided the benefits to the 
programmer outweighed the slight complication of our instruction set.  The final design of the load address 
instruction condensed a load upper, load lower, and or instruction all into one instruction.   
 
Another design choice was the decision to treat labels as immediate values for branching purposes.  While 
this simplified our instruction set, it limits the distance that can be branched to the length of an immediate 
value.  However, since this value was already limited by other constraints, we did not actually need to make 
any additional tradeoffs to make this change.  It was simply an easier method to implement labels within 
our architecture.     
 
In order to more easily handle exceptions, we included room for manipulation of the exception data in our 
main instruction set.  We needed some means of moving the data to and from the cause register, and solved 
this problem by creating a move to co-processor, move-from-coprocessor.  Although the addition of these 
instructions limited the number of other instructions that we could include, we found enough room to 
include everything.  
 
Once we had determined which instructions would be included in our architecture, we needed to finalize 
the format for each type of instruction.  Loosely basing our design off of MIPS, we began each instruction 
with the operation code, and ended them with the function code.  This was done to make the processor 
easier to wire when it came time to actually build the design.   
 
The second major issue that we addressed in our initial design phase was the number of registers to include.  
We wanted to include a power of two, to limit the number of wasted bits in our design.  We compiled a list 
of all of the registers that would be a necessity and then rounded up to the nearest power of two.  A full list 
of the registers and their purposes can be found on pages 8 and 9 of the design journal.     
 
There were three design changes at this point in the project that our group would consider were we able to 
do the project again.  The first of these changes would be to increase the amount of temporary registers 
available.  This would allow for greater versatility when programming.  The drawback, however, is that 
there was little to no room in our current design to fit these.  If they were added, then another bit would 
need to be included to account for the extra register, but this would greatly affect our instruction design.  At 
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that point, it might be easier to expand the processor to 32 bits instead.  Another option for our group was 
to intentionally increase the number of register up to 64 from 16.  This idea would have the same 
drawbacks as the previous idea; however, we now have additional registers to work with.  A possible 
solution would be to specify particular registers to particular instructions.  Another design change we might 
want to make is the addition of more pseudo-instructions, such as a load immediate instruction.  This would 
make things easier for the programmer, while not affect the performance of the processor, as the compiler 
would take care of the translation to machine code.  Once we finalized our instruction set, register 
conventions, and op-code designations, we were ready to move on to the next phase of our project. 
 
The second phase of our project consisted of an RTL description of each instruction type and a list of the 
processor components we wanted to include, and specifically what each one would accomplish.  Page 30 
(Appendix A) shows the RTL description of our group’s architecture.  The benefits of our datapath design 
are the relatively few clock cycles that our instructions require.  The tradeoff here is that our datapath and 
control became more complicated, however from a performance standpoint; a lower CPI is preferable to a 
simplified datapath.    
 
Our component list looked very similar to the list of components for the MIPS instruction set.  A list of our 
components and their inputs and outputs as well as a brief description of each can be found on page 27.  
However, there were some noticeable design difference between our list and the MIPS list.  The first of 
these is the number of control bits in Memory.  MIPS uses two 1-bit control bits, MemRead and 
MemWrite.  The inclusion of MemRead is only for the Memory data register.  Our more simplified design 
did not require such a register, and so we had no need for its accompanying control bit.  Other design 
choices include a separate set of co-processor registers to deal with the mfc0 and mtc0 instructions.  This 
register block is designed to hold the EPC and Cause registers, as well as Display and other co-processes.  
While this will add additional components to our datapath, we felt the accessibility of these registers and 
resulting ease of exception handling was a good design tradeoff.   
 
Another design decision was the inclusion of the Status register as a separate component.  A control bit is 
sent directly to the Status register, and it is wired directly back to control.  This register not only prevents 
one exception from interrupting another, leading to an infinite loop, but also does so as soon as it changes, 
disregarding any triggering from the processor clock.      
 
To facilitate the implementation of our branch instruction, the ALU was given an output bit called NotZero. 
This value was a 1 if the two inputs were not equal and 0 if they were equal.  We believe that this output 
would simplify the branch instruction without adding any drawbacks. 
 
The next phase of our design process required our group to create both the block diagram of our datapath.  
When dealing with the two exception instructions, however, we chose to simplify control by adding another 
clock cycle to the instructions.  In this case, however, since exceptions will not account for the majority of 
the instructions, we felt that this was an acceptable tradeoff to ensure that our group could finish and test 
our processor before the deadline. 
 
While creating the datapath, we found that we needed to make some adjustments in the way that our design 
was implemented.  Almost all of these changes were done by using multiplexers.  While this added 
additional components and control bits to our design, it made further modifications much easier.  Also, if 
we decided to undo one of the changes that we had made, it would be a simple process of removing the 
multiplexer.  
 
If the number of registers in our project design was increased, then it would have possible to eliminate the 
co-processor register block from our datapath by combining it with our normal register block.  While this 
design would have all of the drawbacks mentioned in the previous changes, it would have an additional 
advantage of a simpler datapath.  Not only could we follow the same path for the exception instructions, 
but the control bits would be eliminated, making the creation of the processor much easier.  Another change 
that our group would make if we were able to do the project again would be to write the user input to 
control instead of the display register. 
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Conclusion 
 
As mentioned in the Executive Summary, the processor is not working completely according to 
specifications, making performance information not the most accurate.  Although not all data can be 
directly obtained, some can be calculated or derived from what we can get. 
 
Our instruction set required 56 instructions to calculate the greatest common denominator using Euclid's 
algorithm.  This yields a CPI of 4.219. 
 
The processor's clock cycle frequency is 7.193 MHz, which leads to a cycle time of 139 ns. 
 
For the calculation of a number relatively prime to 0x13B0, the execution of 470 instructions are required 
to obtain a result of 0x000B, which gives a cycle count of 1982.93 and an execution time of 275.67 ns. 
 
Problems with Xilinx file migrations prevented the obtainment of a complete gate count of the processor. 
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Appendix A – Design Documentation 

Instructions and usage 

Introduction 
 
The following document details the instructions which will be performed by our processor.  Due to the 
limitations of a 16-bit machine, several of our instructions have been condensed to the point that an ill-
prepared user might get into trouble.  Please pay special attention to all notes marked with an asterisk ‘*’.  
These provide essential warnings for our instruction set. 
 
Example 
 
‘command’ ‘argument’  
 
 
 
This is just an example to help demonstrate the format of the instructions.  The operation code ("Op code") 
and function bits contain the appropriate information to select the particular instruction desired.  Some 
commands have no function code.  The other bits contain either the address of a register or an immediate 
value, depending on the particular command.  The numbers underneath the table detail the number of bits 
that each part of the instructions occupies. 
 

R1- and R2-Type Instructions 

Addition 
add $rd,  $rs,  $rt   
 
 

     
The add command sums the values of the registers in the registers $rt and $rs, then stores the value in the 
register $rd.   

Subtraction 
sub $rd,  $rs,  $rt   
 
 
 
Similar to the add command, the sub command takes the value in register $rs, subtracts from it the value in 
register $rt, and stores the value in register $rd. 

Store Word 

sw $rd,  $rs,  $rt   
 
 

    
 
The format of sw is slightly different than the standard MIPS instruction.  The $rd register contains the 
value which is to be stored into memory, the $rs register contains the address of the destination in memory, 
and the $rd register contains the offset of the memory address. 

Op $rt 0 Func 

2 4 8 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 
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Set Less Than 
slt $rd,  $rs,  $rt   
 
 
 
The slt instruction changes the value of register $rd based on the value of $rs relative to register $rt.  If the 
value in register $rs is less than the value in register $rt, then the value of $rd is set to 1.  Otherwise, the 
vale of $rd is set to 0. 

Shift Left Logical 
sub $rd,  $rs,  $rt   
 
 
 
In this instruction set, the shift left logical command is formatted as displayed above.  The value in register 
$rs is shifted to the left by the amount in the register $rd, the resultant calculation is stored into register $rd. 

And 

and $rd,  $rs,  $rt   
 
 
 
This instruction performs a bitwise logical nand on two registers, $rs and $rt and stores the resulting value 
into register $rd.   

Or 
or $rd,  $rs,  $rt   
 
 
 
This instruction performs a bitwise logical or on two registers, $rs and $rt and stores the resulting value into 
register $rd. 

Load Word 

lw $rd,  $rs,  $rt   
 
 
 
The format of lw is slightly different than the standard MIPS instruction.  The $rd register contains the 
value which is to be loaded from memory, the $rs register contains the address of the memory destination, 
and the $rd register contains the offset of the memory address. 
 

B-Type Instructions 

Branch If Not Equal 
bne $rs,  $rt,  label 
 
 
 
Since all branch type commands can be calculated using either branch if not equal or branch if equal, and 
given the limited space for instructions, only one of the branch instructions was included in the instruction 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt $rd Func 

2 4 4 4 2 

Op $rs $rt Offset 

2 4 4 6 
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set.  The command compares the values in registers $rs and $rt, and if the two are not equal it tries to 
branch to the address of label. 
 
* The maximum distance bne can go is 25 – 1 = 31 instructions forward or backward. 
 

C-Type Instructions 

Load Upper Immediate 

lui $rt,  imm   
 
 
 
The load upper immediate manipulates the eight most significant bits in a given register.  It replaces the 
eight upper bits in the register $rs with the value specified in the immediate field, and the lower eight bits 
are subsequently replaced with zeros.   

Load Lower Immediate 

lli $rt,  imm   
 
 
 
The load lower immediate manipulates the eight least significant bits in a given register.  It replaces the 
lower bits in the register $rs with the value specified in the immediate field, and the upper eight bits are 
subsequently replaced with zeros.   

Jump Register and Link 

jalr $rt  
 
 
 
The jump register and link is the only jump command in the instruction set.  It jumps to the value specified 
in register $rs, and it also automatically loads the return value (current value of the PC register) into the 
register $ra.  A standard jump can be accomplished if the address for a given label is loaded into a register 
and the jalr command is called referencing that particular register. 

Load Address 

la $rs, label 
pseudoinstruction 
 
The load address commands places the memory location of the given label into register $rs. 
 

Move To Co-Processor 
 
mtc0 $rs,  $co 
 
 
 
This command moves information from a general purpose register to one of the registers in the co-
processor.  This command is especially important for interrupt and exception handling.  The information 
specified in the co-processor register $co will be overwritten upon completion of the command. 
  

Op $rs Immediate Func 

2 4 8 2 

Op $rs Immediate Func 

2 4 8 2 

Op Immediate $rt Immediate Func 

2 4 4 4 2 

Op $rs c0 Extra Secondary 
Func 

Func 

2 4 4 3 0 2 
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Move From Co-Processor 
 
mfc0 $rs,  $co 
 

 
 
This command moves information from one of the co-processor register to one of the general purpose 
registers.  The information in the general purpose register $rs will be overwritten when the data is moved.  
This command is used primarily for dealing with interrupts and exceptions.   

Op $rs c0 Extra Secondary 
Func 

Func 

2 4 4 3 1 2 



C-Biscuits  Page 13 of 57  

Registers and Conventions 
 
Register name Number Usage 
$zero 0 Constant 0 
$at 1 Reserved for assembler 
$v0 2 Results of a function 
$a0 3 Argument 1 
$a1 4 Argument 2 
$t0 5 Temporary (not saved across calls) 
$t1 6 Temporary (not saved across calls) 
$t2 7 Temporary (not saved across calls) 
$s0 8 Saved temporary 
$s1 9 Saved temporary 
$s2 10 Saved temporary 
$k0 11 Kernel use only 
$k1 12 Kernel use only 
$sp 13 Stack pointer 
$ra 14 Return address for function calls 
$t3 15 Temporary (not saved across calls) 
   
Coprocessor registers Number Usage 
$EPC 0 Address of interrupt-causing instruction 
$Cause 1 Interrupt type 
$display 2 Output to display 
 
In addition, there is a program counter register that is not part of either register set.  It holds the address of 
the instruction following what is currently being executed. 
 
For optimal register usage by large-sized programs, it is best to define a set of conventions defining how 
and where registers can be read and written.  In this processor, there are 16 general purpose registers to be 
managed in the defined conventions; one is wired to ground (effectively a "0" register) and cannot be 
written by the programmer. 
 
 
Reg # Reg name Applicable Conventions 

0 $0      Hardwired to ground, always zero 

1 $at      A temporary register used by the assembler, primarily used for storing jump 
addresses and executing jumps.  This register can be used by the coder, but should 
be done so sparingly and with extreme caution since the value is liable to change 
without warning 

2 $v0      This register is used to return values from a procedure call.  A value that is to 
be returned from a procedure should be stored here prior to returning.  Extra 
values should be returned on the stack, following stack conventions. 

3-4 $a0-$a1      These register are used for passing arguments into a procedure.  Values that are 
to be passed should be loaded into these registers prior to calling the procedure.  
Extra values could be sent on the stack, as long as the caller follow proper stack 
convention 
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5-8 $t0-$t3       These registers are for temporary data.  There is no guarantee that they will be 
saved across calls 

9-11 $s0-$s2       These registers are for saved data.  Before these registers can be used, the 
values must be stored by the callee to the stack; the original values should then be 
restored before returning to the calling function.   

12-13 $k0-$k1      These are registers used by the processor for exception calls.  They should 
NOT be used by the coder. 

14 $sp      The stack pointer register points to the current position on the stack.  Any 
modifications made to this register should ultimately be ‘undone’ prior to 
returning  (i.e. if 4 is subtracted from $sp, then 4 must be added before returning) 

15 $ra      This register will contain the return address anytime a jalr command is used.  It 
should NOT be used by the coder except to obtain the return address for a later 
purpose 
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Instruction Formats 

R1 Type Instructions 

 

 
 
opcode = Basic operation of the instruction 
 
func code = This field selects the specific variant of the operation in the opcode field. 
 
rs = The first register source operand 
 
rt = The second register source operand 
 
rd = the register destination operand (gets the result of the operation). 
 

R2 Type Instructions 

 

 
 
opcode = Basic operation of the instruction 
 
func code = This field selects the specific variant of the operation in the opcode field. 
 
rs = The first register source operand 
 
rt = The second register source operand 
 
rd = the register destination operand (gets the result of the operation). 
 

B Type Instructions 

 

 
 
opcode = Basic operation of the instruction 
 
rs = The first register being compared 
 
rt = The second register being compared 
 

2-bit 4-bit 4-bit 4-bit 2-bit 

func code rd rt rs opcode 

2-bit 4-bit 4-bit 4-bit 2-bit 

func code rd rt rs opcode 

2-bit 4-bit 4-bit 4-bit 

offset rt rs opcode 
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offset = a register when data is transferring 
 

C Type Instructions 

 

 
 
opcode = Basic operation of the instruction 
 
func code = This field selects the specific variant of the operation in the opcode field. 
 
rt = The register containing an address 
 
undesignated = bits not currently being used 
 

2-bit 4-bit 8-bit 2-bit 

func code rt opcode undesignated 
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Instruction translation to machine language 

R1-Type Instructions 
Opcode -   10 

 

slt 

 

sll 

 

or 

 

and 

 
 

R2 Type Instructions 
Opcode -   11 

 

add 

 

11 …. …. 
 

…. 00 

func code 
 

rd rt rs 
 

opcode 

10 …. …. 
 

…. 11 

func code rd rt rs opcode 

10 …. …. 
 

…. 10 

func code rd rt rs 
 

opcode 

10 …. …. 
 

…. 01 

func code 
 

rd rt rs opcode 

10 …. …. 
 

…. 00 

func code rd rt rs opcode 
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sub 

 

lw 

 

sw 

 
 

C Type Instructions 
Opcode -   00 

lli 

 

lui 

 

la 
pseudoinstruction 

jalr 

 

00 …. …. …. 11 

func code 
 

imm rt imm 
 

opcode 

00 …. 
 

…. 01 

func code 
 

imm rs opcode 

00 …. 
 

…. 00 

func code 
 

imm rs opcode 

11 …. …. …. 11 

func code 
 

rd rt rs 
 

opcode 

11 …. …. 
 

…. 10 

func code 
 

rd rt rs 
 

opcode 

11 …. …. 
 

…. 01 

func code 
 

rd rt rs 
 

opcode 
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mtc0 

 

mfc0 

 
 

B Type Instructions 
Opcode -   01 

bne 

 
 

00 …. 
 

…. 10 

c0 rs opcode 

0 

extra func code 
 

1 

00 …. 
 

…. 10 

c0 rs opcode 

0 

extra func code 
 

0 

01 …. …. …… 

offset rt rs opcode 

secondary 
func 

secondary 
func 
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Example assembly-language programs 

Euclid's Algorithm 
 
main: lli $s0, 2   # set "m" to 2 initially 
 mfc0 $t0, $2 # grab the "n" from the display register 
 
 add $a0, $t0, $0 # set our first parameter to "n" 
 add $a1, $s0, $0 # set second parameter to "m" 
 

la $s1, loop # create our loop label for usage as a jump  
# site 

 la $s2, GCD # likewise for the GCD function 
 
loop: jalr $s2  # call GCD 
 
 lli $t1, 1  # the constant 1; the limited registers means  

# this must be set every time around 
 
 add $s0, $s0, $t1 # increment "m" 
 
 mfc0 $t0, $2 # grab the "n" from the display register 
    # the scarce register situation leads to this  

# repetition 
  
 add $a0, $t0, $0 # set our first parameter to "n" 
 add $a1, $s0, $0 # set second parameter to "m" 
 

bne $v0, $t1, $s1 # loop; if the return variable wasn't a one (1) 
# jump back and resume looping 

 
 la $t1, exit 
 jalr $t1 
 
GCD: lli $t0, -1  # there are three saved variables to save off  

# to the stack 
 lli $t1, 1  # a good, useful constant to have 
 
 add $sp, $sp, $t0 # increase stack space 
 
 sw $s0, $sp, $0 # save the first one 
 add $sp, $sp, $t0 
 sw $s1, $sp, $0 # and the second one... 
 add $sp, $sp, $t0 
 sw $s2, $sp, $0 # and the final one... 
  
 add $s0, $a0, $0 # store parameter "n" for our usage;  

# also known as "a" 
 add $s1, $a1, $0 # store parameter "m" for our usage as well;  

# also known as "b" 
 
 la $s2, GCD_loop 
 add $sp, $sp, $t0 
 sw $ra, $sp, $0  # store the return address, since we are doing  

# a bit of internal jumping 
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GCD_loop: la $t2, return 
 slt $t0, $0, $s1 # if b !> 0, get out of dodge 
 bne $t0, $t1, $t2 # Note this is compared to a *1*, not a zero 
 
 la $t2, switcher 
 
 slt $t0, $s0, $s1 # if b > a, swap 'em. 
 bne $t0, $t1, $t2 # Again, this compares the slt with 1 
 
 sub $s0, $s0, $s1 # otherwise, subtract b from a and store in a 
  
  
switcher: add $t2, $s0, $0 # swapperoo 
 add $s0, $s1, $0 
 add $s1, $t2, $0 
 jalr $s2  # back to the loop 
  
 
return: add $v0, $s0, $0 # set the return variable to "a" 
 
 lli $t0, 1   # about to unload the stack 
 lw $ra, $sp, $0 
 add $sp, $sp, $t0 
 lw $s2, $sp, $0 
 add $sp, $sp, $t0 
 lw $s1, $sp, $0 
 add $sp, $sp, $t0 
 lw $s0, $sp, $0 
 add $sp, $sp, $t0 
 jalr $ra 
  
exit: # done 

Implementation of Exam 1 Earnings Calculation 
# C-biscuit implementation of Exam 1 assembly code 
 
.data 
 
numHours: .word 9 
rate:  .word 30 
earnings: .word 0 
 
.text 
 
main:  lui $at, 0 

lli $t0, numHours 
or $t0, $t0, $at 

  lli $t1, rate 
  or $t1, $t1, $at 
   
  add $a0, $t0, $0 
  add $a1, $t1, $0 
 
  la $s0, CalcEarnings 
  jalr $s0 
 
  add $t0, $v0, $0 
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  la $s1, earnings 
  sw $t0, $s1, $0 
 
  lli $v0, 10 
  syscall 
 
CalcEarnings: add $t0, $a0, $0 
  add $t1, $a1, $0 
 
  # keep same $a0, $a1 
 
  lui $at, 0 
  lli $t2, -2   # preparation for stack usage for 
return addy 
  or $t2, $t2, $at 
  add $sp, $sp, $t2 
  sw $ra, $sp, $0 
  add $sp, $sp, $t2 
  sw $s0, $sp, $0 
 
  la $t2, CalcGross 
  jalr $t2 
 
  add $s0, $v0, $0  # snag the gross income 
  add $a0, $s0, $0 # back out for consumption 
 
  #la $t2, CalcTax 
  #jalr $t2 
 
  #add $t0, $v0, $0 # grab calculated tax 
  lli $t0, $0 
   
  sub $t2, $s0, $t0 # net = gross - tax 
 
  add $v0, $t1, $0 
 

lli $t2, 2 
or $t2, $t2, $0 
 

  lw $ra, $sp, $0 
  add $sp, $sp, $0 
  lw $s0, $sp, $0 
  add $sp, $sp, $t2 
  jalr $ra 
 
CalcGross: lli $t2, -2  # preparation for stack usage for caller-
saved registers 

or $t2, $t2, $0 
  add $sp, $sp, $t2 
  sw $ra, $sp, $0 
  add $sp, $sp, $t2 
  sw $s2, $sp, $0 
  add $sp, $sp, $t2 
  sw $s1, $sp, $0 
  add $sp, $sp, $t2 
  sw $s0, $sp, $0 
 
  lli $t0, 0 
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  or $t0, $t0, $0 
  lli $s0, 0   # a temp gross  

or $s0, $s0, $0 
  la $s1, cg_loop 
   
 cg_loop: lli $t1, 1  
  or $t1, $t1, $0 
  add $s0, $s0, $a1 # add the rate to the gross again  
  add $t0, $t0, $t1 
   
  slt $t2, $t0, $a0 # while our counter is less than the  

# number of hours, add the rate to  
# itself.  Horrible multiplication 

  bne $t2, $t1, $s1 # hop back to re-loop 
 
  # done with looping 
  add $v0, $s0, $0 
 
  lli $t2, 2  # preparation for stack usage for caller 

# saved registers 
or $t2, $t2, $0 

  sw $s0, $sp, $0 
  add $sp, $sp, $t2 
  sw $s1, $sp, $0 
  add $sp, $sp, $t2 
  sw $s2, $sp, $0 
  add $sp, $sp, $t2 
  sw $ra, $sp, $0 
  add $sp, $sp, $t2 
   
  jalr $ra 

Exception-Handling Code 
  lli $at, -1 
  add $sp, $at, $0 
  sw $t3, $sp, $0 
 
  mfc0 $t3, $Cause 
  bne $t3, $0, BeginEuclid #If we have the second interrupt,  

 # start the program 
 
#Otherwise, we're dealing with the loading of the number 
LoadNum: lli $k0, 176 
  lui $k1, 19 
  or $k0, $k0, $k1 
  mtc0 $Display, $k1 
  bne $k0, $0, Wait 
 
BeginEuclid: lli $at, 1 
  add $sp, $at, $0 
  lw $t3, $sp, $0 
 
  mfc0 $k0, $EPC 
  jalr $k0 #Unfortunately, this kills whatever was in $ra  

   # previously; a flaw, although in our case, there  
   # shouldn't be anything in $ra when this is  
   # executed. 
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Wait:  #We need to exit and wait for the next interrupt.  We don't 
# have an instruction for this--a flaw, alas. 

Machine Code – Euclid’s Algorithm 
 
0x2008 
0x1486 
0x291c 
0x2a40 
0x1428 
0x1801 
0xa95a 
0x1454 
0x1801 
0xad5a 
 
0x02c3 
0x1801 
0xad5a 
0x2c03 
0x1801 
0xe658 
0x1486 
0xcd40 
0xd240 
0x49b9 
0x14e0 
0x1801 
0x995a 
0x0183 
 
0x17fc 
0x1804 
0xfb94 
0xe783 
0xfb94 
0xeb83 
0xfb94 
0xef83 
0xe4c0 
0xe900 
0x1490 
0x1801 
0xad5a 
0xfb94 
0xff83 
 
 
0x9428 
0x5588 
0x9668 
0x5581 
0xe669 
 
0xde40 
0xe680 
0xe9c0 
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0x02c3 
 
0xce40 
0x1404 
0xff82 
0xfb94 
0xef82 
0xfb94 
0xeb82 
0xfb94 
0xe782 
0xfb94 
0x03c3 

Machine Code – Earnings Calculation 
 
0x0500 
0x0608 
0xc503 
0xc604 
0x282c 
0x3806 
0xc205 
0x0980 
0xf905 
0x020a 
0x4001 
 
0xc305 
0xc406 
0x07fe 
0xcd7d 
0xfd0e 
0xcd7d 
0xfd08 
0x277c 
0x270c 
0xc208 
0xc803 
0x0500 
0xd857 
0xc602 
0x0702 
0xed0e 
0xcd0d 
0xed08 
0xcd7d 
0x3e01 
 
0x07fe 
0xcd7d 
0xfd0e 
0xcd7d 
0xfd0a 
0xcd7d 
0xfd09 
0xcd7d 
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0xfd08 
0x0500 
0x0800 
0x29ac 
 
0x0601 
0xc848 
0xc565 
0x8537 
0x5dbc 
0xc802 
0x0702 
0xfd08 
0xcd7d 
0xfd0a 
0xcd7d 
0xfd0e 
0xcd7d 
0x3e00 
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List of components and their interfaces 
 
Program Counter (PC) 
Input: 16-bit address selected from multiplexor. 
Output: 16-bit address 
Controls: PCWrite: 1-bit bus 
 
Memory 
Inputs: 16-bit address from ALUOut or PC; 16-bits of data from register B 
Output: 16-bit contents of a memory location 
Controls: MemWrite: 1-bit 
 
Instruction Register (IR) 
Input: 16-bit instruction from memory 
Output: 16-bit instruction 
Control: InstructionWrite: 1-bit 
 
Register File (Reg) 
Inputs: two 4-bit Read Registers; one 4-bit Write Register; one 16-bit Write Data 
Outputs: 16-bit Read Data 1 and 2. 
Control: 1-bit RegWrite 
 
Co-processor Register File (C0Reg) 
Inputs: one 4-bit Read Register; one 4-bit Write Register; one 16-bit Write Data 
Outputs: 16-bit Read Data 1. 
Control: 1-bit RegWrite 
 
Register A (A) 
Inputs: 16-bits of data from the Register File (Read Data 1) 
Output: unaltered 16-bits of data 
Control: none 
 
Register B (B) 
Inputs: 16-bits of data from the Register File (Read Data 2) 
Output: unaltered 16-bits of data 
Control: none 
 
Register C (C) 
Inputs: 16-bits of data from the Co-processor Register File (Read Data) 
Output: unaltered 16-bits of data 
Control: none 
 
Status Register (Status) 
Inputs: none 
Output: none 
Control: 1-bit Status 
 
Arithmetic Logic Unit (ALU) 
Inputs: two 16-bit operands 
Output: 1-bit NotZero; 16-bit ALUResult 
Control: 4-bit operation 
 
ALUOut Register (ALUOut) 
Input: 16-bit ALUResult 
Output: 16-bit ALUResult, unaltered 
Control: none 
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Sign Extend by 10 bits 
Inputs: 6-bit branch offset 
Ouput: 16-bit sign-extended word address 
Control: none 
 
Concatenate right by 8 (Conc8 Hi) 
Inputs: 8-bit immediate 
Output: 16-bit number with immediate in upper bits 
Control: none 
 
Concatenate left by 8 (Conc8 Low) 
Input: 8-bit immediate 
Output: 16-bit number with immediate in lower bits 
Control: none 



C-Biscuits  Page 29 of 57  

Descriptions of components 
 
The program counter (PC) contains the 16-bit address of the instruction to be executed after the current 
instruction.  Its value comes from the increment of the address (which is done via the addition of two to the 
current PC value), a jump address, or a branch address.  Its only output is its own 16-bit value.  It accepts 
one bit from the control specifying whether to its contents should be rewritten with waiting values. 
 
The memory holds user-accessible data, accessible by 16-bit address.  Given a 16-bit address from 
ALUOut or the PC, a 16-bit instruction or piece of datum, whichever lies at the given address, can be 
output.  In this case, the one-bit MemRead control input must be enabled.  For data to be written to 
memory, the one-bit MemWrite control input must be enabled.  Likewise, the memory component will 
accept 16-bits of data from register B, to be placed in the address given by ALUOut. 
 
The instruction register (IR) is a temporary register used for holding an entire instruction before it is 
decoded.  It takes its 16-bit value from memory when the 1-bit InstructionWrite control is enabled, and 
outputs that same value for instruction decoding. 
 
The register file (Reg) holds the contents of the processor's 16 general-use registers, accessible by four-bit 
number.  Given two four-bit register numbers, the 16-bit contents of those two registers are output to Read 
Data 1 and Read Data 2.  When the RegWrite control bit is asserted, the contents of the 16-bit Write Data 
input are written to the register indicated by the four-bit Write Register input. 
 
Registers A and B are temporary registers used for holding the contents of a register (each) before they are 
processed further.  They always write their contents at the appropriate time, so there are no control signals.  
The contents are obtained from the Register File's Read Data 1 and Read Data 2 for Registers A and B, 
respectively. 
 
The co-processor's register file (C0Reg) holds three 16-bit registers, accessible by four-bit number.  Given 
a four-bit register number, the 16-bit contents of that register are output to Read Data.  When the 
C0RegWrite control signal is assert, the data at the 16-bit Write Date input are written to the register 
indicated by the four-bit Write Register input. 
 
Register C is a temporary register used for holding the value from the co-processor's register file's Read 
Data output. 
 
The Status register stops the processor from accepting more than one exception at a time. 
 
The Arithmetic Logic Unit (ALU) performs the primary mathematical operations of the processor.  Given 
two operands, it will perform an operation on them (as determined by the ALUOp control signal) and 
output the result.  In addition, the ALU subtracts the two operands and asserts a NotZero output if the two 
numbers are unequal. 
 
The ALUOut register (ALUOut) is another temporary register that is perpetually in write-mode.  It obtains 
and holds the results of an ALU operation for a clock cycle. 
 
There are also several concatenate left and right components and a sign extension component.  These are 
simply hard-wired components used to properly place or multiply numbers and have no control signals. 
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RTL Description of Instructions 
 
We broke our instructions down into 5 different sets of RTL blocks depending on the instruction.  All of 
our R-type instructions will be executed with practically the same RTL, the LW (Load Word) and SW 
(Store Word) will require slight modifications.   
 
In the C-type, the LLI (Load Lower Immediate) and LUI (Load Upper Immediate) will both have similar 
RTL blocks, but the JALR (Jump And Link Register) will be different, and will have its own set.  Finally, 
the BNE (Branch if Not Equal) instruction will have an RTL chunk all to itself.   
 
We differ slightly from MIPS in that only the first step is common amongst all of our different instructions.  
Differences occur in the second step, which allows us to do our jump command in just two steps instead of 
three.  It does, however, complicate the control logic, but, hopefully, our small number of instructions will 
help keep it from being overwhelming. 

 

 
 

Step Description mtco mfco 
Get Instruction & 
increment PC 

Instruction Register <= Memory[PC] 
PC<= PC+2 

 A<= Reg(IR[13:10]) 
 

C<= CoProReg(IR[9:6]) 
 

Additional step 
(simplifies control) 

ALUout<=A ALUout<=C 

 CoProReg(IR[9:6]) <= ALUout Reg(IR[13:10]) <= ALUout 
 

*Concatenate 8-bits (00000000) 

Step Description Standard  
R-type 

Load Word/ 
Store Word 

Branch if Not 
Equal 

Load Lower Immediate/ 
Load Upper 
Immediate 

Jump And 
Link Register 

Get Instruction & 
increment PC 

Instruction Register <= Memory[PC] 
PC<= PC+2 

 A<= Reg([IR[13:10]) 
B<= Reg(IR[9:6]) 

ALUOut<=PC+(SE[5:0] <<1) 

Upper: reg([IR[13:10])<= 
IR[9:2] conc8* 

 
Lower:  reg([IR[13:10])<=  

conc8(IR[9:2]) 

$ra<= PC 
 
PC<= 
reg(IR[13:10]
) 

 ALUOut <= 
A op B 

ALUOut <= A + 
B 
 
B<= 
reg[IR(5:2)] 

If (A != B) 
PC<= 
ALUOut 

  

 Reg([IR(5:2)
]<=ALUOut 

Load:  
reg([IR(5:2)] <= 
Mem(ALUOut) 
 
Store: 
 
Mem(ALUOut 
<= B 
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Block Design 
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Control Signals 
 
This processor implementation has a multitude of one-bit control signals, along with several two-bit control 
signals, and one three-bit signal. 

One-bit control signals 
 
The RegWrite control signal is a single-bit control signal that, when asserted, writes the values of the Write 
Data input to the general-purpose register selected by the Write Register number.  When this is deasserted, 
it has no effect. 
 
The C0RegWrite control signal is a single-bit control signal that, when asserted, writes the values of the 
Write Data input to the co-processor register selected by the Write Register number.  When this is 
deasserted, it has no effect. 
 
The InstOrData control signal is a one-bit signal that, when asserted, uses the contents of ALUOut to 
specify the address of the memory unit to be accessed.  When it is deasserted, the value of the PC is used. 
 
When asserted, the MemWrite one-bit control signal permits the contents of the memory unit at the location 
given by the address input to be overwritten by the data at the Write Data input.  When not asserted, this 
control signal has no effect. 
 
IRWrite is another one-bit control signal.  When asserted, the output from the memory unit is placed in the 
Instruction Register.  When it is not asserted, there is no effect. 
 
Similar to the IRWrite control signal, the PCWrite control signal permits the PC to be written when 
asserted.  When deasserted, there is no effect. 
 
When asserted, the PCWriteCond permits the writing of the PC if the Not Zero output from the ALU is also 
active. 
 
HiOrLo determines whether a load upper immediate or load lower immediate instruction will take place.  
When it has a value of one, a concatenation of eight bits to the lower end has taken place, indicating a load 
upper immediate is taking place.  Otherwise, a load lower is taking place. 
 
The ReadReg2Src control signal selects which bits of the instruction will dictate the register chosen for 
reading.  When zero, the instruction bits 9 thru 6 are used.  Otherwise, the bits 5 thru 2 are used, which is 
typical of a load word or store word command. 
 
The C0RegDest control signal selects either the EPC (0) or the Cause (1) as the register to be written to by 
the Control unit. 
 
Status changes the status register to indicate whether or not the program can currently process an interrupt.  
When asserted, the processor cannot process an interrupt due to either being in the middle of an instruction 
or due to the fact that it is already handling an interrupt.  When not asserted, any interrupt-handling code 
will be executed if necessary. 

Two-bit control signals 
 
The ALUSrcA determines the source for the first operand to the ALU.  When the control signal is 00, the 
contents of the PC are selected.  When the value is 01, the data from the A register is selected.  When the 
control signal is 10, the value selected as the cause of an exception is chosen as the first input for the ALU.  
Finally, when the control signal is 11, register C, the co-processor register output, is selected. 
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Like ALUSrcA, ALUSrcB determines the source for the second operand to the ALU.  When the control 
signal is 00, the B register is selected.  When the control signal is 01, then one (1) is selected.  When the 
control signal is 10, then the second input to the ALU is the sign-extended word-aligned branch offset from 
the Instruction Register.  When the control signal is 11, the value passed along is zero. 
 
The PCSource determines the source for the next update of the PC.  If the signal is set to 00, the 
ALUResult becomes the next PC value.  When the control signal is 01, ALUOut (the branch target address) 
is the new value of the PC.  A control signal of 10 sets the PC to the jump destination address.  The value 
of the PC is set to the exception-handling address of 0x6666 when the PCSource control signal is set to 11. 
 
The RegWriteSrc selects what data to write to the general-purpose registers or co-processor register, 
whether it be from memory (00), ALUOut (01), the PC (10), or a concatenated immediate (11). 

Three-bit control signals 
 
The ALUOp determines the operation to be performed by the ALU.  When the control signal is 000, the 
ALU performs addition on its two operands.  When the control signal is 001, a set-less-than operation is 
performed--subtraction is performed and the NotZero output is set appropriately.  When the control signal 
is 010, the ALU performs a bitwise and on the operands.  A control signal value of 011 performs a bitwise 
or.  If the control signal is 100, the first operand is passed through without modification.  A control signal 
of 101 indicates a shift left logical will be performed. 
 
The RegDest control signal determines the correct number of the register to be written to by the instruction, 
depending on the type and nature of the instruction.  When the control signal is set to 000, an R1 or R2 type 
instruction is being executed, and the destination register is set to $rd.  When RegDest is set to 001, a 
move-to-co-processor instruction is being executed, and the write destination is $rs in the co-processor 
register.  When the control signal is set to 010, a C type instruction is being executed, and the destination 
register is set to $rs.  A control signal value of 011 indicates a jump instruction is being executed, and the 
destination register is correspondingly set to $ra.  A control signal of 100 allows the co-processor register 
selected by the C0RegDest control signal to be used. 
 
The Cause control signal selects one of up to five exceptions.   There are external exceptions from up to 
five devices (numbered 000 thru 100). 
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Control Units 
The processor's Control is implemented using a finite state machine and a portion of combinational logic. 
 
The combinational logic unit, called the ALUOp Calculator here, uses the Op code and function code, both 
of which are inputs to the Control, to determine the appropriate ALUOp for the instruction. 
 
Below is a truth table that completes this mandate.  It should be noted that when the Op code is 11 and the 
function code is either 10 or 11, a load word or store word instruction is being processed and the state of 
the ALU does not matter for this branch of the state sequence. 
 
Opcode[0] Opcode[1] Funct[0] Funct[1] ALUOp[0] ALUOp[1] ALUOp[2] 
1 0 0 0 0 0 1 
1 0 0 1 1 0 1 
1 0 1 0 0 1 1 
1 0 1 1 0 1 0 
1 1 0 0 0 0 0 
1 1 0 1 1 1 0 
1 1 1 0 x x x 
1 1 1 1 x x x 
 
This resolves into the following equations: 
 
ALUOp[0] = (Funct[0])' * Funct[1] 
ALUOp[1] = Opcode[1] * (Funct[0])' + Funct[0] 
ALUOp[2] = (Opcode[1])' * (Funct[0])'  + Funct[0] * (Funct[1])' 
 
Another block of combinational logic handles the interrupts.  There are five devices that give interrupts in 
our design, although only two are implemented in software.  The five different button presses are registered 
with individual J/K flip-flops that have enables and reset options.  They are wired such that once one button 
press has been acknowledged, all the flip-flops are disabled until they are cleared by the Control.  This 
ensures that only one exception occurs at a time, although it does mean that only the first button pressed 
during the execution of an instruction is noted. 
 
The five devices, however, must translate into a three-bit Cause that is passed along the datapath for 
exception-handling.  Below is the truth table for this conversion. 
 
Device0 Device1 Device2 Device3 Device4 Cause[0] Cause[1] Cause[2] 
1 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 0 
0 0 1 0 0 0 1 1 
0 0 0 1 0 1 0 0 
0 0 0 0 1 1 0 1 
 
 
The primary control unit is the finite state machine described in the state transition diagram in Appendix 
D. 
 
The system should initialize (or reset) into the state given by the control signals in the diagram below.  
There are several signals whose initialization values are not set, as there is nothing appropriate to set them 
to.  For example, there is no immediately correct setting for the HiOrLo control signal, which is set to zero 
when the upper eight bits of an input are set to zero, indicating a load lower immediate is being performed.  
These "don't care" control signals are not included in this initialization state or any subsequent states.  The 
diagram will show only those control signals that change from the previous state. 
 
In addition, it should be noted that "assert" indicates that the control signal is active low. 
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RESET

!(RESET)

(opcode=^b10) OR (
opcode=^b11) OR (

opcode=^b01)

(opcode=^b10) OR ((
opcode=^b11) AND !(
funct=^b10) AND !(

funct=^b11))

device_press[4:0]

funct[1:0]

opcode[1:0]

PC[15:0]

InterruptCheck

RExecution
IRWrite='0';
PCWrite='0';

ReadReg2Src='0';
ALUSrcA=^b01;
ALUSrcB=^b00;
ALUOp0=A2;
ALUOp1=A1;
ALUOp2=A0;

RCompletion
RegWrite='1';
IRWrite='0';
PCWrite='0';

ReadReg2Src='0';
RegWriteSrc=^b00;

RegDest=^b000;

Initialization
RegWrite='0';

C0RegWrite='0';
InstOrData='0';
MemWrite='0';

IRWrite='0';
PCWrite='0';

PCWriteCond='0';
ResetStatus='1';
OutStatus='0';

ReadReg2Src='0';

Fetch
RegWrite='0';

C0RegWrite='0';
InstOrData='0';
MemWrite='0';

IRWrite='1';
PCWrite='1';

PCWriteCond='0';
ReadReg2Src='0';
ALUSrcA=^b00;
ALUSrcB=^b01;
PCSource=^b00;
ALUOp=^b000;

DecodeRegFetch
IRWrite='0';
PCWrite='0';

ReadReg2Src='0';
ALUSrcA=^b00;
ALUSrcB=^b10;
ALUOp=^b000;
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(opcode=^b00) AND (
funct=^b10)

!(secondary_funct)
secondary_funct

InterruptCheck

Fetch

Mtc0Read
ALUSrcA=^b01;
ALUOp=^b100;

Mtc0Completion
C0RegWrite='1';

RegWriteSrc=^b00;
RegDest=^b001;

Mfc0Read
ALUSrcA=^b11;
ALUOp=^b100;

Mfc0Completion
RegWrite='0';

RegWriteSrc=^b00;
RegDest=^b010;

C0InstrRead
IRWrite='0';
PCWrite='0';
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not_funct1

funct0
A0

A1 = funct1 OR (opcode0 AND not_funct1 
AND funct0)

A2 = (not_opcode0 AND not_funct1) OR (
funct1 AND not_funct0)

ALUOp[2:0]

ALUSrcA[1:0]

ALUSrcB[1:0]

Cause[2:0]

device_reset[4:0]

funct0 not_funct0

funct1 not_funct1

opcode0 not_opcode0

PCSource[1:0]

RegDest[2:0]

RegWriteSrc[1:0]
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(opcode=^b00) AND (
funct=^b01)

(opcode=^b00) AND (
funct=^b11)

(opcode=^b00) AND (
funct=^b00)

Fetch

Fetch

Fetch

InterruptCheck
InterruptCheck

InterruptCheck

LuiCompletion
RegWrite='1';
IRWrite='0';
PCWrite='0';
HiOrLo='0';

RegWriteSrc=^b10;
RegDest=^b010;

LliCompletion
RegWrite='1';
IRWrite='0';
PCWrite='0';
HiOrLo='1';

RegWriteSrc=^b10;
RegDest=^b010;

Jump
RegWrite='1';
IRWrite='0';

RegWriteSrc=^b11;
PCSource=^b10;
RegDest=^b011;

 

(opcode=^b11) AND ((
funct=^b10) OR (

funct=^b11)) opcode=^b01

(funct=^b10)

(funct=^b11)

DecodeRegFetch
DecodeRegFetch

InterruptCheck

InterruptCheck

SwMemAccess
InstOrData='1';
MemWrite='1';

LwMemAccess
RegWrite='1';

InstOrData='1';
RegWriteSrc=^b01;

RegDest=^b000;

Bne
PCWriteCond='1';
ALUSrcA=^b01;
ALUSrcB=^b00;
PCSource=^b01;
ALUOp=^b001;

AddressCompute
IRWrite='0';
PCWrite='0';

ReadReg2Src='1';
ALUOp=^b000;
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@ELSE(device_press=^b00000
) OR OutStatus

device_press3

device_press4
C0

device_press1

device_press2
C1

C2 = device_press0 OR device_press2 OR 
device_press4

exceptionDone = PC < 175

InterruptCheck

Fetch

InterruptCheck
RegWrite='0';

C0RegWrite='0';
InstOrData='0';
MemWrite='0';

IRWrite='0';
PCWrite='0';

OutStatus=InStatus 
& !exceptionDone;
PCWriteCond='0';
ReadReg2Src='0';

ExcepPrep
PCWrite='0';

OutStatus='1';
PCSource=^b01;
ALUSrcA=^b00;
ALUSrcB=^b01;
ALUOp=^b000;

EPCandPCWrite
PCWrite='0';

C0RegDest='0';
PCSource=^b11;

RegWriteSrc=^b10;
RegDest=^b100;

device_reset=^b11111;

CauseWrite
RegWrite='1';

C0RegWrite='1';
MemWrite='1';

IRWrite='1';
PCWrite='1';

PCWriteCond='1';
ALUSrcA=^b10;
ALUSrcB=^b11;
ALUOp=^b000;

CauseWritComplet
C0RegWrite='0';
C0RegDest='1';

RegWriteSrc=^b00;
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Control Tests 
In order to ensure correct functionality of the control, several simulations need to be run to ensure correct 
transitions.  For example, the Op code and function code for an addition statement can be input using 
Xilinx's State Bench application; the transitions of the state should follow the diagram above. 
 
Omitted is the initialization state, which the processor enters upon loading. 
 
The progression of states for a particular Op code/function code combination can be seen in the table 
below. 
 

Instruction Op 
code 

Funct code 
(secondary) 

State progression 

lli 00 00 Fetch LliCompletion InterruptCheck -- -- 
lui 00 01 Fetch LuiCompletion InterruptCheck -- -- 
jalr 00 11 Fetch Jump InterruptCheck -- -- 

mtc0 00 10 (0) Fetch C0InstRead Mtc0Read Mtc0Completion InterruptCheck 
mfc0 00 10 (1) Fetch C0InstRead Mfc0Read Mfc0Completion InterruptCheck 
bne 01 -- Fetch DecodeRegFetch Bne InterruptCheck -- 
slt 10 00 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 
sll 10 01 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 
or 10 10 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 

and 10 11 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 
add 11 00 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 
sub 11 01 Fetch DecodeRegFetch RExecution RCompletion InterruptCheck 
lw 11 10 Fetch DecodeRegFetch Address 

Compute 
LwMemAccess InterruptCheck 

sw 11 11 Fetch DecodeRegFetch Address 
Compute 

SwMemAccess InterruptCheck 

 
Following the test of the state transitions, it is necessary to ensure that all outputs are valid.  For example, 
using the truth table in the previous section for the combinational logic, it should be possible to execute 
each R-type instruction and verify that the correct ALUOp code is output. 
 
For each state, the below tables can be used to verify the output of the Control.  The initialization step 
includes the "don't care" signals for the sake of creating a single comprehensive list of control signals.   
Subsequent states only show those signals that change value.  Because the processor's components are 
active low, not asserted means a value of one.  Selectors for multiplexers have actual values. 
 
Init Control Signal Value 
 RegWrite  Not asserted 
 C0RegWrite Not asserted 
 InstOrData 0 
 MemWrite Not asserted 
 IRWrite Not asserted 
 PCWrite Not asserted 
 PCWriteCond Not asserted 
 RegWriteSrc (2-bit) Don't care 
 Status Not asserted 
 HiOrLo Don't care 
 ReadReg2Src 0 
 ALUOp (3-bit) Don't care 
 ALUSrcA (2-bit) Don't care 
 ALUSrcB (2-bit) Don't care 
 PCSource (2-bit) Don't care 
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 RegDest (3-bit) Don't care 
 Cause (3-bit) Don't care 
 
Fetch Instruction Control Signal Value 
 IRWrite Asserted 
 PCWrite Asserted 
 Status Asserted 
 ReadReg2Src 0 
 ALUOp (3-bit) 000 (Add) 
 ALUSrcA (2-bit) 00 (PC) 
 ALUSrcB (2-bit) 01 ("2") 
 PCSource (2-bit) 00 (ALUResult) 
 
DecodeRegFetch Control Signal Value 
 IRWrite Not asserted 
 PCWrite Not asserted 
 ReadReg2Src 0 
 ALUOp (3-bit) 000 (Add) 
 ALUSrcA (2-bit) 00 (PC) 
 ALUSrcB (2-bit) 10 (SE'd and shifted) 
 
RExecution Control Signal Value 
 IRWrite Asserted 
 PCWrite Asserted 
 ReadReg2Src 0 
 ALUOp (3-bit) CalculatedALUOp 
 ALUSrcA (2-bit) 10 (A) 
 ALUSrcB (2-bit) 00 (B) 
 
RCompletion Control Signal Value 
 RegWrite  Asserted 
 IRWrite Not asserted 
 PCWrite Not asserted 
 RegWriteSrc (2-bit) 01  
 Status Not asserted 
 ReadReg2Src 0 
 RegDest (3-bit) 010 
 
AddressCompute Control Signal Value 
 IRWrite Not asserted 
 PCWrite Not asserted 
 ReadReg2Src 1 
 ALUOp (3-bit) 000 (Add) 
 ALUSrcA (2-bit) 10 (A) 
 ALUSrcB (2-bit) 00 (B) 
 
LwMemAccess Control Signal Value 
 RegWrite  Assert 
 InstOrData 1 
 RegWriteSrc (2-bit) 01 
 Status Not asserted 
 RegDest (3-bit) 000 (r-type) 
 
SwMemAccess Control Signal Value 
 InstOrData 1 
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 MemWrite Assert 
 
Bne Control Signal Value 
 PCWriteCond Assert 
 Status Not asserted 
 ALUOp (3-bit) 110 (subtr) 
 ALUSrcA (2-bit) 10 (A) 
 ALUSrcB (2-bit) 00 (B) 
 PCSource (2-bit) 01 
 
LliCompletion Control Signal Value 
 RegWrite  Assert 
 IRWrite Not asserted 
 PCWrite Not asserted 
 RegWriteSrc (2-bit) 11 
 Status Not asserted 
 HiOrLo 1 
 RegDest (3-bit) 000 (C-type) 
 
LuiCompletion Control Signal Value 
 RegWrite  Assert 
 IRWrite Not asserted 
 PCWrite Not asserted 
 RegWriteSrc (2-bit) 11 
 Status Not asserted 
 HiOrLo 0 
 RegDest (3-bit) 000 (C-type) 
 
Jump Control Signal Value 
 RegWrite  Assert 
 IRWrite Not asserted 
 RegWriteSrc (2-bit) 10 (PC) 
 Status Not asserted 
 PCSource (2-bit) 10 (jump) 
 RegDest (2-bit) 011 ($ra) 
 ReadReg2Src 0 (bits[9:6]) 
 
C0InstrRead Control Signal Value 
 IRWrite Not asserted 
 PCWrite Not asserted 
 
Mtc0Read Control Signal Value 
 ALUOp (3-bit) 100 (pass-through first) 
 ALUSrcA (2-bit) 01 (A) 
 
Mtc0Completion Control Signal Value 
 C0RegWrite Assert 
 RegWriteSrc (2-bit) 00 (ALUout) 
 Status Not asserted 
 RegDest (2-bit) 001 (mtc0) 
 
Mfc0Read Control Signal Value 
 ALUOp (3-bit) 100 (pass-through first) 
 ALUSrcA (2-bit) 11 (C) 
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Mfc0Completion Control Signal Value 
 RegWrite Assert 
 RegWriteSrc (2-bit) 00 (ALUout) 
 Status Not 
 RegDest (3-bit) 010 (c-type) 
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Component Specification 

Control unit creation 
 
The primary control units were crafted within Xilinx' StateCAD application.  Using the state transitions 
described in tabular format in the Control Tests section, StateCAD was used to construct the finite state 
machine (FSM), taking care to ensure readability by heavy use of aliases for states.  These act as pointers or 
placeholders for states that have been defined elsewhere, so that not all fifteen options for transitioning 
from a state must be placed in a single location.  This enables each path of the FSM to be placed on a 
separate page, reducing crowding significantly. 
 
The combinatorial logic in the control unit, described above in the form of the ALUOp and Cause 
computations, was also implemented in StateCAD using the Logic function to input the above transition 
formulas.  Care had to be taken to match the correct lest-significant bits so that the outputs were not 
inverted. 
 

ALU design and creation 
 
At the heart of any good processor is a good ALU.  We decided to approach the ALU construction by 
starting with a very small module, a one bit adder, and building up from there.  The adder contains nand 
gates for calculating a carry out and an exclusive or gate for calculating the sum bit.  With only three input 
bits (input 1, input 2, cin) we tested every possible input and checked against desired results.   
 
Now that we had a reliable one bit adder the next move was to make a one bit ALU.  The functionality we 
wanted our 1 bit ALU to perform is exhibited in the following table: 
 
Function Signal Bits 
A plus B  000 
Set If A is less than B (SLT) 001 
A and B  010 
A or B 011 
Output the input A 100 
Shift left 101 
Subtract B from A 110 
Output 0 111 
 
An eight bit multiplexer is utilized to provide for the different outputs.  Some of these functions are not 
utilized in our current processor design, but we tried to choose properties which would allow us some 
flexibility in our design and might be useful for testing the ALU in conjunction with other components.  
Trial cases consisted of an input combination for each function of the ALU.  If the ALU passed all the trial 
cases, we felt confident that it would pass the other cases as well. Note that the most significant bit (MSB) 
of the ALU had to be designed differently than the other fifteen.  Not only does it have a special output pin 
for set less than (SLT), but it also contains the logic necessary for calculating overflow.  Also, in all cases 
except the least significant bit (LSB), the input 001 (SLT) into the multiplexer is wired to ground. 
 
In class, we discussed inverting the numbers on the single bit ALU level.  However, for our ALU we 
decided to institute four bit carry look ahead.  This broke the sixteen bit ALU down into four chunks.  Each 
chunk contained the carry look ahead logic, four one bit ALU’s, and a four bit inverter (for subtraction).  
Once again, the top chunk of ALU’s was slightly different because of overflow calculations and the SLT 
command.  The bottom most chunk was also modified because it is necessary to have a carry in when 
subtracting using two’s compliment.  Testing intensified at this level; it consisted of using three or four sets 
of numbers for each function the ALU is intended to perform.  Initially, the subtraction gave erroneous 
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results.  After a little examining, we discovered that our fast carry logic was receiving inputs prior to their 
inversion.  This threw the whole subtraction off-kilter, but it was an easy mistake to fix.   
 
The final step in the ALU construction consisted of compiling the four chunks into one sixteen bit monster.  
We also needed to design and fabricate a ‘shift left box’ that sat beside our ALU and a sixteen bit 
multiplexer to combine the two.  The schematic was fairly easy to assemble, and primarily consisted of 
connecting parts we’d already designed.  Testing, however, was exhaustive.  This is the final stage of the 
ALU, but obviously the test cases are far too large to test every combination.  Instead, choose to test do five 
or six sets of numbers for each function the ALU is supposed to perform.  We also tested as many ‘sticky’ 
situations as we could:  adding negative one and one requires numerous carries and a carry out but no 
overflow, set less than on two numbers of equal value should be false, performing an ‘or’ operation 
between a binary number containing all ones and another containing all zeros, etc.  Once our design passed 
this rigorous testing, we felt confident that we have a sturdy, consistent ALU. 

Memory creation 
 

The Memory piece of our group’s processor was created using the CoreGen feature of the Xilinx computer 
program.  A Distributed Memory block design was used, with the following specifications.  The component 
was named memory, and it was set to a depth of 2^12, or 4096 lines.  The width of the data was set to 16, 
corresponding to the number of bits in our instruction set.  The memory type was selected as a Single Port 
RAM, and the Multiplexer Construction was left to the default LUT based.  All other settings were left to 
their default values, with the exception of the initial contents.  The memory was preloaded with the file 
testmemory.coe, which is shown below: 
 
memory_initialization_radix=2;  
memory_initialization_vector=  
 
0000000000000000,  
0000000000000001,  
0000000000000010,  
0000000000000011,  
0000000000000100,  
0000000000000101,  
0000000000000110,  
0000000000000111,  
0000000000001000,  
0000000000001001,  
0000000000001010,  
0000000000001011,  
0000000000001100,  
0000000000001101, 
0000000000001110,  
0000000000001111; 
 
Once CoreGen had created the main piece of memory, we then connected and named the following inputs.  
The D(15:0) pin was connected to the WriteData(15:0) input bus.  This pin and input correspond to the 16-
bit number that will be stored into memory.  The A(11:0) pin was connected to the Address(11:0) input 
bus.  This bus and input correspond to the 12-bit number that is the address in memory where the data will 
either be written or read from.  The WE pin is the Write Enable pin, and this is connected to the MemWrite 
control bit.  The final input is the CLK pin, and this pin is connected to the CLK clock input of the whole 
processor.  The only output, SPO(15:0), is connected to the output bus MemData(15:0).  This bus then 
takes the information from the memory and carries it to the Instruction Register, and ultimately to the rest 
of the processor.   
 



C-Biscuits  Page 46 of 57  

Instruction Register 
 
The Instruction Register (IR) has a 16-bit input and four outputs. The instruction register's input is wired 
out with the memory output.  The first output is two bits and will contain bits [15:14] of the instruction. 
These bits are the Op code of the actual instruction being processed.  The second is four bits and will 
contain bits [13:10] of the instruction.  
 
The third is eight bits and will contain bits [9:2] of the instruction. The last output is 2 bits and will contain 
bits [1:0] of the instruction. The IR also has the Control signal IRWrite as an input, which determines if the 
register will write new contents on the next rising clock edge.  The IR was made by using 16 flip flops, and 
wiring them up according to the specifications above. 
 

Register File 
 
We created this part by using CoreGen.  We used the dual-port memory as a basis for the register file.  
Then we had to add a multiplexer to determine when to write and when to read.  The register file has four 
inputs, all of which are four bits.  It has two outputs which are also four bits.  The register file can be read 
by the outputs from the instruction register.  The register file can be written by the instruction register 
and/or the Co-Processor register.  The outputs always go to either the “A” temporary register or the “B” 
temporary register. 

Co-Register File 
 
The Co-Register piece of our group’s processor was created using the CoreGen feature of the Xilinx 
computer program.  A Distributed Memory block design was used, with the following specifications.  The 
component was named memory, and it was set to a depth of 2^4, or 16 lines.  The width of the data was set 
to 16, corresponding to the number of bits in our instruction set.  The memory type was selected as a Single 
Port RAM, and the Multiplexer Construction was left to the default LUT based.  All other settings were left 
to their default values, with the exception of the initial contents.  The memory was preloaded with the file 
testmemandreg.coe, which is shown below: 
 
memory_initialization_radix=2;  
memory_initialization_vector=  
 
0000000000000000,  
0000000000000001,  
0000000000000010,  
0000000000000011,  
0000000000000100,  
0000000000000101,  
0000000000000110,  
0000000000000111,  
0000000000001000,  
0000000000001001,  
0000000000001010,  
0000000000001011,  
0000000000001100,  
0000000000001101, 
0000000000001110,  
0000000000001111; 
 
Once CoreGen had created the main piece of the co-register, we then connected and named the following 
inputs.  The D(15:0) pin was connected to the WriteData(15:0) input bus.  This pin and input correspond to 
the 16-bit number that will be stored into memory.  The A(3:0) pin was connected to a bus called the 
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RegChoice(3:0) input bus.  This bus and input correspond to the 4-bit number that is the register in memory 
where the data will either be written or read from.   
 
The RegChoice(3:0)  bus is chosen using four two-input MUX devices to decide whether the 
WriteRegister(3:0) input bus or the ReadRegister(3:0) input bus will be used.  The control bit for the Mux 
devices is the C0RegWrite input bit.  This bit is also the input for the WE (Write Enable) pin.  The final 
input is the CLK pin, and this pin is connected to the CLK clock input of the whole processor.  The only 
output, SPO(15:0), is connected to the output bus MemData(15:0).  This bus then takes the information 
from the memory and carries it to the Instruction Register, and ultimately to the rest of the processor. 
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Integration Plan 
 
Our first step in testing the integration of our processor was to test the ALU with the temp registers. The 
ALU and the temp registers were wired up using Xilinx.  We wired one temp register to InputA(15:0), 
another to InputB(15:0) and finally wired another temp register up to the output labeled AluOut(15:0).  We 
tested the schematic using ModelSim.  We put values into the temp registers, gave the ALU a function, and 
made sure the proper value was outputted.  
 
The next step was to include the register file with the ALU and the temp registers above.  This time, we put 
values into the register file and made the proper values appeared in the ALUOut.  We then created a part 
which include the ALU, the register file, and the temp registers A, B, and C. 
 
After we had the parts above wired up, we decided to concentrate on the left side of our datapath.  We 
wanted to deal with the memory block first.  We made sure that the memory was “Distributed Memory,” 
therefore the instruction is read asynchronously.  We wired up the PC temp register with the memory block.  
Put in some values, and once again, made sure the correct values were outputted.   
 
The next step was to connect the instruction register to the memory block and the PC.  We wired the output 
of the memory block up with the input of the instruction register.  The instruction register then breaks up 
the instruction into 4 different outputs.  We made sure that it broke the instruction up correctly before we 
moved on to the next piece.   
We then made a part called “tempregandpc” which encapsulated the memory block, the pc, and the 
instruction register. 
 
Once we had established that these two chunks of the datapath were working correctly, we connected them 
together via our design.  This also included the uses of the ‘conc I hi’ and ‘conc 8 lo’ components.  This 
primarily consisted of generating a variety of different size ‘bus muxes’ using the Xilinx Coregen.  A 
simple test bench was created to test all each different instruction type, and results were compared to the 
desired outputs.   
 

Once each of the individual pieces had been tested separately, then in small groups, we decided it 
was time to give the full blown processor a whirl.  The actual construction of the processor was a breeze.  
Everyone in the group had been very meticulous in construction of their pieces, so it was easy to wire them 
all together.  

 
 After the construction of the processor, the really intense debugging began.  We decided it would 
be best to test one instruction at a time.  The way our processor is designed, however, all the instructions 
are highly dependant on the loading of immediate values (load upper immediate and load lower 
immediate).  Thusly, we had to first establish these two instructions before moving on to any others.  Once 
these two were set, we proceeded to test the add, load word, store word, jump register and link, and the 
branch if not equal instructions.  Of course there were a few minor nuances, as there is likely going to be in 
a project of this caliber.  In general, we corrected these issues by making small modifications to the control 
module, since it was most convenient to alter and reload.  
  
 We did hit one major snag; the jump instruction would not work the way it was currently 
implemented.  The memory modules in the Xilinx CoreGen were not exactly the same was what we were 
expecting to be using in the project.  We had to make some modifications to CoreGen module, or redo 
some of our design.  We opted to modify the module, but a side effect is that we cannot read from the first 
register address and write to an address at the same time (exactly what needed to happen in our jump 
instruction).  Consequently we were faced with a dilemma; we could either make more modifications to the 
CoreGen memory module, or modify the jump instruction.  Since we had already tested everything with the 
current design, we chose to make a modification in the jump instruction (simply moving the location of the 
register bits).  With these alterations, the command worked chummily.     
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Appendix B – Design Journal 
Tuesday, September 21 – Tonight was the first time we met as a group.  We decided what time would be a 
good time to meet with everybody’s schedules.  We also assigned some various tasks.  Matt was in charge 
of the Design Journal, and Caleb was in charge of changing the Euclid’s algorithm to assembly language.  
Our next meeting with be Friday, September 24 at 7:45. 
 
Friday, September 24 – We met for a little bit tonight.  Caleb presented the assembly language 
representation of Euclid’s algorithm.  We also had some preliminary design ideas:  
 

Things that our instructions need to accomplish 
 

1. Reading and writing to the memory is a must 
2. Adding two numbers together, or subtracting two numbers 
3. moving information from one register to another (maybe by a combination of two or more 

instructions) 
4. jump to a label 
5. branch to a label 
6. jump and link, a register where we can store the return address 
7. jump to a register:  necessary for returning from a function call 

 
Registers I don’t think we can live without 

 
1. The stack pointer is a must have, it’s the best way to get things to and from the memory 
2. registers to pass things to memory (can use the stack for this however) 
3. registers to save variables (can use the stack for this again) 
4. register to store a return address (might be able to use the stack for this too, but I don’t know 

 
Monday, September 27 – Tonight we made a lot of progress towards completing the first milestone which 
is due on Wednesday.  We decided on what instructions we will use, as well as what type of instruction we 
will use.  We designated some assignments for each member of the group.  We decided to have 4 
instruction types.  An R1 type, R2 type, B type, and a C type.  We decided to have 16 instructions so that 
we could have a 2 bit opcode, and then a 2 bit function code.  The reason we decided to separate the opcode 
and function code was so that in the B type we would only have the function code, and therefore our offset 
would be bigger, allowing us to branch further away.  We also decided to have 16 registers, that way we 
can reference any register with 4 bits.  A list of the instructions we are using, and well as the format for out 
instructions are listed in the design document. 
 
Sunday, October 3 – We met today to clear up some deficiencies of our first milestone.  We changed the 
name of the $at register to $jt register.  Now, for the jal instruction, we want the programmers to store the 
labels in $jt register and then use that register for jumps.  Another topic we discussed was exception 
handling.  We decided to store the exception handling code into memory.   
 
Sunday, October 10 – We met today to discuss how we will approach milestone 2.  Our first step of the 
day was to break down the datapath into components.  We came up with the components of an R-Type to 
be: the PC, memory, instruction register, register file, output A register, output B register, ALU, and the 
ALUOut register.  There are two exceptions to the R-Type datapath (load word and store word).  For the 
load word and store word, the datapath will be the same as the R-Type except it will also contain the 
memory data register.  For the B-Type, the components are the same except on the shift left instruction, 
there is a 10-bit sign extension.  The datapath is the same except for the ALU there will be a “not-zero” 
output.   
 
For the load upper immediate, it will be shifted left at 8 bits, and then be put in the register file.  For the 
load lower immediate, it will be shifted right 8-bits, then put in the register file also. 
 
For the Jump Register and Link instruction, we will store the PC+2 in $at, then move $at into $ra after we 
have jumped, and then when we have to link back, it will jump to $ra.      
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We also went through the list of input signals, output signals, and control signals for each component, 
including the number of bits in each signal.  
 
We also divided the milestone into assignments for each person.  Here are the assignments: 
 
-Matt and Caleb will do an RTL description of each instruction or set of related  instructions.  

 
-Michael will do the description of the tests necessary to verify the correct implementation of your RTL 
description. 
 
-Caleb will be writing a memo indicating the current status of your design 
 
-Matt will continue updating the webpage 
 
-Everybody will make any changes to the Assembly language and machine language specifications 
 
-Melissa will be putting together an unambiguous English description of each component in terms of its 
input, output, and control signals 
 
Sunday, October 17 - Mike & Lissa @ 13:00: Decision to move function codes to the end of all 
instructions to avoid the exception of wiring the branch instruction. 
 
Load address dilemma: if "la" is treated as a pseudoinstruction for a "lui, lli, or" sequence, this would free 
up an instruction for dealing with the Exception Dilemma.  
 
Discussed exception dilemma: Four registers need to be handled: display (could free up another temporary 
register if this got moved), cause, status, EPC. 
 
If load address instruction is removed as discussed above, then we have a free C-Type instruction with 
which to implement the move to/from "coprocessor 0" instructions. As J.P. suggested in our last meeting, 
we could easily as a second function bit to distinguish  between a move to and move from instruction. For 
instance, op code 00, function code 10 is a Co-Processor move instruction. Secondary function code 0 is a 
move to instruction, while code 1 is a move from. 
 
Now, to actually solve the Exception Dilemma, one solution would be to add four registers in current 
register file, then use a control bit to switch between addressing the general registers and the coprocessor's 
registers. This would save us a component, but would cost us at least two control bits and much added 
complexity in wiring inputs and outputs on the register file. 
 
A second (and better?) solution would be to simply add a second, smaller register file to contain our four 
remaining registers. (It should be noted here that the Cause and Status registers can most likely be 
combined into a single register if the Status register is only to be a single bit--in exception or not. We 
should have less than 2^16 different types of exceptions, so we can apply a bit of formatting to our sixteen 
bits and save ourselves some execution time by allowing our processor to get both Status and Cause in one 
step.)  
 
Keep the Status register as a separate, small register (not in coprocessor file) that is hardwired to the 
Control signal that flips it on/off. This speeds the setting of Status and simplifies the testing. 
 
This second solution would cause us to add a single, temporary output register ("C"). It would also require 
the addition of a mux (and Control) to the "Read Register 1" to choose between the general and 
coprocessor's register files. The RegDst control signal would have to expand to two bits and the 
corresponding mux would expand to handle three inputs. 
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In addition, the pre-ALU muxes would have to expand to include accepting data from the coprocessor's 
registers. (Upgrading the already-full four-mux to handle eight inputs--better than using three muxes, or 
worse?) Corresponding control signals would need to expand/be modified. 
 
We chose the mux following the A register to expand to handle four inputs. One of the new inputs will be 
the register data from "C". The second new input will be a number for the Cause (3-bit?). The Cause will be 
selected using a Control signal and a mux of options. (So we'll have two muxes, one providing a fourth 
option for the next.) 
 
For best/simplest execution, let $rs always be the general register, and let $rt always be the coprocessor 
register, so that the format is consistent with the other C-Types, and to minimize the number of "selections" 
of where data can come from. This way, only one expanded mux needs to be used to pick the write register 
(Coproc = 10 or general = 00 or 01, depending on R1/2 type or C-Type), and nothing additional is needed 
to select the correct bits for a coprocessor write. 
  
Saturday, October 23 – We met today to make sure that milestone 3 was set in stone, and to assign certain 
parts of milestone 4 to each other.  We would like to have something running by next weekend.   
 
Here is a state diagram of our control signals: 
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Monday, October 25 – We met today to make sure all our documentation was correct.  We met to make 
sure everybody knew what they were doing on their parts.  Out next meeting will be Wednesday night. 
 
Wednesday, October 27 – We met tonight to discuss the milestone 4.  We made sure everything was 
correct in control.  We made sure we had all of the components of milestone 4 completed.  Lissa did almost 
all the work on the control.  We divided the project in parts.  Lissa worked on control.  Caleb worked on the 
ALU.  Mike will work on the Memory and the Co-Processor Register.  Matt will work on the Instruction 
Register and the General Purpose Register.  Our next meeting will be Saturday, at which point we hope to 
have all of our components and the documentation completed.   
 
Saturday, October 30 – We met today to finish up our parts and Caleb demonstrated how to test our parts 
using ModelSim.  Out next meeting with be Monday at 9:00. 
 
Monday, November 1 – Tonight we met to see how our components were going.  We also had our test 
procedures finished for all of our components.  We talked about some of our flaws as well as some things 
we have completed and are comfortable with.   
 
Sunday, November 7 – Today we gathered all of our parts together and began trying to integrate them.  
We worked on integrating for about 4 hours.  The meeting was pretty successful, we got a lot of stuff done, 
and our datapath is looking promising.   
 
Monday, November 8 – We met today for about 2 more hours to do some more integration.  Things are 
still going well.  Almost all of our parts are working as planned. 
 
Friday, November 12 – We met for a little bit today and discussed what we needed to do for the final 
report.  We assigned tasks to each person to have done the next day.  Our next meeting is Saturday at 3:00. 
 
Saturday, November 13 – We met once again.  This time we went over what each one of us needs to do 
for the presentation on Monday.  Caleb is planning on finishing the integration of all our Xilinx pieces 
tonight.  Our next meeting is Sunday at 10:00. 
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Appendix C – Test Results 

ALU 
 
The test cases and testing of the ALU are described in the ALU design and creation 
section above. 

Control and user inputs 
 
The user input device was tested using a test bench constructed in Xilinx and executed in 
ModelSim.  Essentially, the first device was activated, made to hold the value for more 
than a clock cycle—to ensure that it could—then reset.  Then the second device was 
activated and the five-bit device output was noted.  This was continued for the five 
inputs.  A portion of the waveform can be seen directly below. 
 

 
 
Following the testing of the input device alone, it was connected to the block device of 
the Control and tested systematically.  The Control was transitioned through each state, 
then run through an interrupt sequence.  The first waveform below shows the execution 
of a couple of instructions. 
 



C-Biscuits  Page 55 of 57  

 

Memory 
 
The testing of this piece will use Xilinx to create a test bench file, and then use the 
ModelSim program to test the file and create a waveform.  The waveform will be given 
predetermined input values, with predetermined output values.  These will then be 
compared to the results of the simulation, and checked for discrepancies.  The test will 
first run through the first several memory addresses with the MemWrite unasserted, to 
ensure that the file loaded properly.  Then, the MemWrite will be asserted and new 
values written into various locations in memory.  Finally, the addresses in memory will 
be checked again, with MemWrite unasserted, to ensure that the changes to memory 
remain.     
 

 

Instruction Register 
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In order to test this register we simulated it in ModelSim. We input a number into the IR 
and made sure we received the correct number on the output.  We constructed test 
benches to test several cases, and everything seemed to work as expected.  Here is an 
example:  
 

 
 

Register File 
 
For this part, we used ModelSim to test it.  Once again, we put in various numbers, and 
checked to see if we outputted what we wanted.  Again in this case, we were successful.  
Here is the waveform for the register file:   
 

 
 

Co-Register File 
 
The testing of this piece will use Xilinx to create a test bench file, and then use the 
ModelSim program to test the file and create a waveform.  The waveform will be given 
predetermined input values, with predetermined output values.  These will then be 
compared to the results of the simulation, and checked for discrepancies.  The test will 
first run through the first several memory addresses with the MemWrite unasserted, to 
ensure that the file loaded properly.  Then, the MemWrite will be asserted and new 
values written into various locations in memory.  Finally, the addresses in memory will 
be checked again, with MemWrite unasserted, to ensure that the changes to memory 
remain.     
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Integrated Unit 
 
The integrated unit test involved a simple collection of instructions, this would tell us if 
things were functioning correctly.   
 


